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Abstract This is a study of the annual and interannual
variability of regional rainfall produced by the Center
for Weather Forecasts and Climate Studies/Center for
Ocean, Land and Atmospheric Studies (CPTEC/COLA)
atmospheric global climate model. An evaluation is
made of a 9-member ensemble run of the model forced
by observed global sea surface temperature (SST)
anomalies for the 10-year period 1982–1991. The Brier
skill score and, Relative Operating Characteristics
(ROC) are used to assess the predictability of rainfall
and to validate rainfall simulations, in several regions
world wide. In general, the annual cycle of precipitation
is well simulated by the model for several continental
and oceanic regions in the tropics and mid latitudes.
Interannual variability of rainfall during the peak rainy
season is realistically simulated in Northeast Brazil,
Amazonia, central Chile, and southern Argentina–
Uruguay, Eastern Africa, and tropical Pacific regions,
where the model shows good skill. Some regions, such as
northwest Peru–Ecuador, and southern Brazil exhibit a
realistic simulation of rainfall anomalies associated with
extreme El Niño warming conditions, while in years with
neutral or La Niña conditions, the agreement between
observed and simulated rainfall anomalies is not always
present. In the monsoon regions of the world and in
southern Africa, even though the model reproduces the
annual cycle of rainfall, the skill of the model is low for
the simulation of the interannual variability. This is
indicative of mechanisms other than the external SST
forcing, such as the effect of land–surface moisture and
snow feedbacks or the representation of sub-grid scale

processes, indicating the important role of factors other
than external boundary forcing. The model captures the
well-known signatures of rainfall anomalies of El Niño
in 1982–83 and 1986–87, indicating its sensitivity to
strong external forcing. In normal years, internal climate
variability can affect the predictability of climate in some
regions, especially in monsoon areas of the world.

1 Introduction

Because of the presence of non-linear processes in the
climate system, deterministic projections of change are
potentially subject to uncertainties arising from sensi-
tivity to initial conditions or to parameter settings. Such
uncertainties can be partially quantified from ensembles
of runs from the same model (with slightly different
initial condition for each ensemble member) or from
ensembles of integrations from different climate models.
In order to be able to make reliable forecasts of weather
and climate in the presence of both initial conditions and
model uncertainty, it is now becoming common to re-
peat the prediction many times from different perturbed
initial states. These multi-initial condition ensembles
have been useful in separating interannual climate var-
iability into a chaotic component due to sensitivity to
initial conditions, and a potentially predictable compo-
nent based on the ensemble average. Thus, there is a
potential to provide probabilistic forecasts and to assess
the potential seasonal climate predictability and the skill
of climate models (Harzallah and Sadourny 1995; Ro-
well et al. 1995; Kumar et al. 1996; Zwiers 1996; Mason
et al. 1999; Basu 2001; Kumar et al. 2001).

Based on the dispersion of the ensemble members
(‘‘inter-member spread’’) it is possible to establish
confidence thresholds on the seasonal forecast and by
analysing hit rates the skill of the model at seasonal and
interannual scales can be determined. For a number of
predefined regions, inter-member spread may bear a

Climate Dynamics (2003) 21: 459–475
DOI 10.1007/s00382-003-0346-0

J. A. Marengo Æ I. F. A. Cavalcanti Æ P. Satyamurty

I. Trosnikov Æ C. A. Nobre Æ J. P. Bonatti

H. Camargo Æ G. Sampaio Æ M. B. Sanches

A. O. Manzi Æ C. A. C. Castro Æ C. D’Almeida

L. P. Pezzi Æ L. Candido

J. A. Marengo (&) Æ I. F. A. Cavalcanti Æ P. Satyamurty
I. Trosnikov Æ C. A. Nobre Æ J. P. Bonatti Æ H. Camargo
G. Sampaio Æ M. B. Sanches Æ A. O. Manzi Æ C. A. C. Castro
C. D’Almeida Æ L. P. Pezzi Æ L. Candido
Centro de Previsão de Tempo e Estudos Climaticos (CPTEC).
Instituto Nacional de Pesquisas Espaciais (INPE), 12630-000
Cachoeira Paulista, São Paulo, Brazil,
E-mail: marengo@cptec.inpe.br



relation to the accuracy of the prediction, and a climate
signal in a regional prediction should appear as a dis-
cernible shift on the forecast distribution relative to the
climatological distribution. This is important, because
when compared with the external SST forcing, the
internal model variability could be very large, and a
single model simulation of interannual climate variabil-
ity or even climate forecast may be inadequate for
judging the model’s abilities and skill (Barnett 1995).

The present study focuses on the validation of re-
gional mean interannual variability of rainfall from an
ensemble of nine simulations of the global atmospheric
model of the Center for Weather Forecasts and Climate
Studies (CPTEC/COLA AGCM), forced with observed
SST during a 10-year period (1982–91) (Cavalcanti et al.
2002). This validation identifies possible systematic er-
rors and biases in rainfall produced by this atmospheric
model and assesses model skill and predictability of
rainfall for several regions worldwide.

2 Background

Seasonal and interannual climate variability consist of
two components: (a) the externally forced component,
which is the response to slowly varying external
boundary forcing (SST, sea ice, albedo, soil moisture,
and snow coverage) and radiative forcing (greenhouse
gases and aerosol concentration); (b) the internally
forced component, which is the atmospheric variability
induced by internal dynamics and the weather noise
(Brankovic et al. 1994; Koster et al. 2000; Zheng and
Fredericksen 1999).

The externally forced component is potentially pre-
dictable at long-range assuming the forcings themselves
are potentially predictable (Goddard et al. 2001; God-
dard and Mason 2002). However, even if the SST
anomalies could be predicted with no error, the associ-
ated atmospheric evolution could not be determined
accurately due to the chaotic nature of the atmosphere.
The internally forced component may be potentially
predictable up to about two weeks (Lorenz 1973).

The seasonal mean tropical circulation may be poten-
tially more predictable than the mid-latitude circulation
as the low-frequency component of the tropical variability
is primarily forced by slowly varying boundary condi-
tions, such as SST, as supported by observational evi-
dences and modeling work (see reviews in Zwiers 1996;
Goswami 1998; Shukla 1998; Mason et al. 1999; Caval-
canti et al. 2002; Goddard et al. 2001). A model can
reproduce well the observed mean climate and this is an
important and useful aspect of its performance. It is also
important to know its skill in reproducing the interannual
variability at regional or global scales, as well as to
understand if the variability is externally forced (e.g., by
SST), or if it results from internal dynamics with its
characteristic chaotic behavior.

Predictability of climate at seasonal-to-interannual
time scales at both global and regional scale must

include an analysis of sources of predictability (bound-
ary conditions versus initial conditions, as well as sea
surface versus land surface boundary conditions), the
ENSO induced-predictability, as well as the ENSO in-
duced-teleconnections and the influence of other ocean
basins such as the Atlantic and Indian oceans (Goddard
et al. 2001). The land surface potentially provides
additional sources of extended predictability for climate.
Much of the skill in predicting departures from normal
seasonal totals or averages, often associated with
atmospheric circulation patterns, has its origin in the
slowly changing conditions at the Earth’s surface that
can influence the climate.

The most important surface condition-affecting cli-
mate is the SST, particularly the SST in the tropical
zones. On inland subtropical regions, land-surface con-
ditions such as soil wetness and snow cover also may
play important role on seasonal and year-to-year climate
variability (Koster et al. 2000). The climate response to
several recent volcanic eruptions has been studied in
simulations with AGCMs and there are indications that
strong tropical volcanic activity can add predictability in
Northern Hemisphere mid-latitudes (Hansen et al. 1996;
Mao and Robock 1998). However, variability from
other sources makes assessment of the observed climate
response difficult, particularly as the two most recent
volcanic eruptions (Mt. Pinatubo and El Chichón)
occurred in El Niño years.

Simulations using specified SST have an extensive
history, and a comprehensive review of relevant work
can be found in Goddard et al. (2001) and Shukla et al.
(2000a, b), including the AMIP (Atmospheric Model
Intercomparison Project) climate simulations (Sperber
and Palmer 1996; Sperber et al. 1999a, b; Gates et al.
1999). As a consequence of these AMIP simulations and
derived studies, one cannot expect the mean values of
these random variables to be uniquely defined by a single
realization, but rather posses some presumable chaotic
dependence on initial atmospheric conditions. Thus, the
use of ensembles provides some idea of the probability
distribution of outcomes, as well as the mean outcome,
which may reasonably be regarded as a best guess for the
forecast.

Several studies have been devoted to simulations of
the observed interannual variability of rainfall in several
parts of the world, including regions where climate
variability apparently is linked strongly to SST anoma-
lies in tropical oceans in addition to the Pacific. The
physical links between tropical and extra tropical SST
variability, and the sensitivity of seasonal climate to this
external forcing have been previously documented (see
reviews in Goddard et al. 2001). Rainfall over the Indian
subcontinent correlates better to tropical Pacific vari-
ability than to local Indian Ocean variability (e.g.,
Weare 1979).

Tropical Pacific SST forcing correlates well with
rainfall and river discharge anomalies in the northwest
coast of Peru, Colombia, the northern Amazonia–
Northeast Brazil region and southern Brazil–Argentina
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and south-central Chile (Marengo 1992; Garreaud and
Rutllant 1996; Poveda and Mesa 1997; Uvo et al. 1998;
Grimm et al. 1996, 2000). In Mexico and parts of the
Caribbean, the ENSO signal corresponds to more winter
precipitation and less summer precipitation (Magaña
et al. 1998).

SST anomalies in the equatorial Atlantic Ocean affect
the meridional position of the Intertropical Convergence
Zone (ITCZ) and thus the interannual variability of
rainfall in Northeast Brazil (Hastenrath and Heller 1977;
Moura and Shukla 1981; Wagner 1996; Nobre and
Shukla 1996; Folland et al. 2001) and the Amazon basin
(Marengo 1992; Uvo et al. 1998; Rocha 2001). Enfield
and Mayer (1997) and Enfield and Alfaro (1999) have
identified the relative influence of the eastern Pacific
(ENSO) and equatorial Atlantic SST over rainfall over
the Caribbean and northern South America. Experi-
ments using the CPTEC/COLA AGCM were also per-
formed by and Cavalcanti et al. (2000) to analyze the
influence of Pacific and Atlantic Ocean on precipitation
over South America. Links with tropical Atlantic SST
have also been established in rainfall variability in wes-
tern Africa (Semazzi et al. 1988; Rowell et al. 1995;
Ward 1998) while rainfall variability (mainly on the
‘‘short rains’’) in southern and eastern equatorial Africa
is significantly correlated with ENSO events through
ENSO’s direct effect on Indian Ocean SST variability
(Goddard and Graham 1999). Work by Rocha and
Simmonds (1997), Thiaw et al. (1999), and Goddard and
Graham (1999) have suggested that the Indian Ocean
contributes significantly to climate variability in those
regions.

Land surface characteristics and processes also serve
as slowly varying boundary conditions on climate sim-
ulations. Realistic representation of land surface–atmo-
sphere interactions is essential to a realistic simulation
and prediction of continental scale climate and hydrol-
ogy. Experiments on changes in land-surface, such as
regional and large-scale deforestation in the Amazon
basin (see reviews in Marengo and Nobre 2001; Rocha
2001; Costa and Foley 2000) have identified the sensi-
tivity of rainfall to changes in vegetation and soil
moisture conditions in the region. The role of interan-



4 Experiment design, observational data sets and data
processing, and assessment of skill of the model

The simulation of interannual climate variability consists of an
ensemble of nine integrations with different initial atmospheric
conditions taken in November 1981. Monthly-observed SST fields
from the Climate Prediction Center/National Centers for Envi-
ronmental Prediction (CPC/NCEP) Optimum Interpolated SST
dataset (Reynolds and Smith 1994) are applied as forcing boundary
conditions. The results were analyzed from January 1982 to
December 1991. The CPTEC/COLA is not able to account for the
volcanic forcing due to volcanic eruption, such as El Chichón in
1982, which seems to have added predictability in the Northern
Hemisphere as shown by Hansen et al. (1996) in the GISS GCM.
The model’s seasonal and annual climatology is defined as the
mean of all 9-ensemble members of the 10-years experiment, and
the surface adjustments on climate conditions of soil moisture is
two and half months.

To validate the model interannual variability of global and
regional rainfall, data derived from the Climate Prediction Center
[CPC] Merged Analysis Precipitation (CMAP) (Xie and Arkin
1997, 1998), was used for the observations. The CMAP data set
is constructed on the 2.5� · 2.5�) latitude/longitude grid and
covers a 20-year period from January 1979 to December 1998. It
uses several estimates of precipitation as measured by satellite
over land and oceans, as well as the rain gauge data over land.
The word ‘‘validation’’ used here represents the degree of cor-
respondence between model and the real world it seeks to rep-
resent.

Seasonal rainfall indices are computed for the regions shown in
Fig. 1. These indices are for both model and observations during
the peak rainy season, and are expressed as normalized departures
from the 1982–91 mean. The regions have been chosen for assess-
ments of the annual cycle and interannual variability of simulated
rainfall, as well as climate predictability and model skill, mainly
because: (a) the dependence of rainfall variability of these regions
to extreme SST forcing in tropical oceans, as documented in several
studies (see Sect. 2), or (b) the relatively low predictability in some
regions (such as the monsoon regions) where the external forcing
may be dominated by internal chaotic behavior of the climate
system. Some regions including Northwest Peru, Northeast Brazil,
Amazonia, southern Brazil, East Africa, and northern Australia
exhibit the impact of ENSO events. Subdivisions of some regions
were made according to differences on the rain-producing mecha-
nisms and on the annual cycle of rainfall. The monsoon regions of
India, Southeast Asia–Indonesia, and the Americas have been in-
cluded, as well as areas of the major tropical convergence zones
(SPCZ, ITCZ). Other regions in Africa (central east Sahel, tropical
West Africa, Eastern Africa, southwestern Africa), southwestern
Europe, North America (northeast USA–Canada and northwest
USA–Canada), southern Chile–Argentinean Patagonia and Asia
(Japan) have also been selected.

In the verification of the seasonal rainfall simulations, it is
acknowledged that the robustness of verification statistics is al-
ways a function of the sample size. In the case of seasonal fore-
casts verification, we consider that the sample size of 10 years is
just sufficient. In a companion paper, Cavalcanti et al. (2002)
presents maps of correlation of seasonal rainfall anomalies be-
tween the ensemble mean model results and the observational

Fig. 1 Selected land and oceanic regions for the computation of rainfall indices
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CMAP data sets, as well as reproducibility and analyses of vari-
ance. Here we introduce verification scores for probabilistic
forecasts: Brier skill score and the Relative Operating Charac-
teristic (ROC) score.

The skill of the CPTEC/COLA AGCM is assessed using the
Brier skill score (Bs) implemented following Sperber and Palmer
(1996), Sperber et al. (1999a, b), and Storch and Zwiers (1999, pp
396, 400–402). Brier score is probabilistic, since we are considering
the probability than an event (e.g., above-normal rainfall) actually
occurs (100% = did happen; 0% = did not happen). Bs is calcu-
lated for simulated precipitation in millimeters of rainfall during
the rainy season in several regions of the planet relative to the 9-
member ensemble 10-year model climatology. Brier skill scores may
range from 0.0 (a perfect score) to 1.0 (total disagreement with
observations), with the score of climatological forecast being 0.5
(Sperber et al. 1999a).

In addition, the ROC method is also used to represent the
quality of categorical forecast. This methodology is intended to
provide information on the characteristics of systems upon which
management decisions can be taken, and is based on ratios that
measure the proportion of events and nonevents for which warn-
ings were provided. These ratios provide estimates of the proba-
bilities that an event is forecast and that an incorrect warning will
be provided for a nonevent.

For each of the rainy seasons in the regions listed in Table 1,
the 10-year observed and simulated area-averaged rainfall were
grouped into equiprobable terciles. The three categories are re-
ferred to as ‘‘below-normal’’, ‘‘near-normal’’, and ‘‘above-normal’’,
and the ensemble-mean simulated rainfall was categorized in this
way. The hit and false-alarm rates, respectively, indicate the pro-
portion of events for which a warning was provided correctly, and
the proportions of nonevents for which a warning was provided
incorrectly. The derivation of ROC is based on contingency tables
giving the hit rate and false alarm rate for deterministic or prob-
abilistic forecasts. For details on the ROC, the reader is referred to
Mason and Graham (1999).

For probabilistic forecasts, the set of hit rates is plotted against
the corresponding false-alarm rates to generate the ROC curve
(Fig. 1 in Mason and Graham 1999). The area under the curve is
commonly used as an index of the performance of the model and is
known as the ROC score. Because there is skill only when the hit
rate exceeds the false-alarm rate, the ROC curve will lye above the
45� line from the origin of the origin if the forecast system is
skillful and the total area under the curve will be greater than 0.5.
In the skillful forecast system, the ROC curve bends to the top left,
where hit rates are larger than false-alarm rates. Where the curve
lies close to the diagonal the forecast system does not provide any
useful information. If the curve lies below the line, negative skill is
indicated suggesting that the forecast is under-performing clima-
tology.

5 Regional rainfall characteristics and time variability

This section presents the highlights of the intercompar-
isons between modeled and observed seasonal and in-
terannual variability of precipitation. We examine
seasonal and interannual rainfall variations and also
determine the skill of the model for selected regions,
analyzing the inter-member spread, as well as the Brier
skill score and the ROC.

Table 1 shows the mean and standard deviations of
the observed and modeled rainfall, in specific regions
shown in Fig. 1 during the peak of their rainy seasons.
The standard deviation is the average of the individual
members’ standard deviations, and Table 1 shows that
few regions exhibit simulated STD that are different
from the observed by more than a factor of two. In

tropical regions such as northern and southern
Amazonia, tropical West Africa, West Pacific and
Southeast Asia the model underestimates the observed
rainfall, while over regions such as Northeast Brazil,
northwest Peru–Ecuador, the northwest United States,
India, the Pacific Intertropical Convergence Zone
(ITCZ), along the South Pacific Convergence Zone
(SPCZ), and over the Andes the model overestimates the
observed rainfall. The overestimation over the Andes is
related to deficiency in the spectral representation of the
orography and the associated circulation. The spurious
precipitation anomaly in this region was also found by
Stern and Miyakoda (1995), who mention the Gibbs
error associated with truncation of steep orography as a
possible cause.

The deficiency of the model in simulating the
amount of precipitation also can be partially related to
the convection scheme. Differences between CPTEC/

Table 1 Mean and standard deviation of observed (CMAP) and
CPTEC/COLA AGCM simulated rainfall in mm/day in several
regions of the planet (Fig. 1). The second column shows the mean
of the peak of the rainy season at each region. Table shows the
ensemble mean and the standard deviation of the interannual
variability (STD) of the 1982–91 run

Region Rainy
season

Observations Model

Mean STD Mean STD

Amazonia (northern) MAM 4.8 1.4 6.2 2.3
Amazonia (southern) DJF 4.2 2.3 5.1 3.3
Caribbean–southeast
USA

JJAS 5.6 1.1 3.3 1.4

Central Australia DJF 0.9 0.7 0.9 0.7
Eastern Africa FMAM 3.6 1.6 2.7 1.5
Southwest Europe ONDJ 1.9 0.4 1.5 0.4
India JJA 3.8 2.5 3.3 3.0
Japan JJAS 3.6 0.4 3.6 1.4
North American
monsoon

JJAS 2.1 0.8 1.3 1.1

Northeast Brazil
(northern)

FMAM 5.8 2.7 2.9 3.0

Northeast Brazil
(southern)

FMAM 2.8 1.7 5.4 2.2

Northeast USA–
Canada

ASON 3.9 0.6 3.6 0.7

Northwest Peru–
Ecuador

FMAM 5.2 2.9 2.3 1.7

Northwest USA–
Canada

NDJF 3.4 1.3 1.9 0.8

Pacific ITCZ JFMA 3.2 2.3 5.1 2.4
Central–East Sahel JJAS 0.4 0.6 0.8 0.9
South American
monsoon

DJF 3.9 2.9 4.4 3.1

Southern Brazil–
Uruguay

JJA 4.1 1.5 2.6 1.0

Southeast Asia–
Indonesia

MJJAS 4.9 1.9 5.5 3.3

Southern Chile–
Argentinean
Patagonia

MJJ 2.1 1.1 4.7 1.1

Southwest Africa DJF 0.8 0.8 1.3 1.2
SPCZ DJF 4.8 1.9 7.3 1.0
Tropical West Africa FMAM 3.3 1.3 4.1 1.5
West Pacific DJF 6.4 0.9 7.0 1.9
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COLA and the COLA version (Shukla et al. 2000a) can
be related to the use of different convection schemes
(Kuo/RAS), different resolutions (T62L28/R40L18),
and other changes discussed in Rocha (2001) and
Cavalcanti et al. (2002). Comparing the CPTEC/COLA
results with other model results, similar general clima-
tological features are simulated and part of the pre-
cipitation differences can also be related to the
convection scheme. The largest errors in the precipita-
tion field occur almost at the same places as the errors
observed in the ensemble of models of AMIP (Gates
et al. 1999), i.e., Indonesia region, South America,
Africa, ITCZ and SPCZ.

5.1 Annual cycle of precipitation for selected world
regions

The behavior of the annual cycle of mean precipitation
from the 9-member ensemble is discussed by analyzing
regional patterns (Fig. 2). The discussion also includes
the standard deviation of interannual variability (STD
in Table 1) and the inter-member spread shown in
Fig. 2. The model simulates well the annual cycle in
some regions in the tropical Americas, Indian subcon-
tinent, Europe and tropical oceanic regions.

In northern and southern Amazonia (Fig. 2a, b) the
model systematically underestimates rainfall during the

Fig. 2a–p Annual cycle of
observed and modeled rainfall
in several regions of the globe
(mm/day). Thick black line
shows the observed rainfall.
Thick red line represents the
mean rainfall from the model
ensemble. Thin blue lines
represent each member of the
ensemble
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January–May rainy season in contrast to the realistic
depiction of the wintertime dry season. In compensa-
tion, the model generates overestimations of rainfall
over Northeast Brazil, Northern Peru and Ecuador,
along the South Atlantic Convergence Zone (SACZ)
and the SPCZ, and over the Panama–Colombia coast
(Cavalcanti et al. 2002). This underestimation of rain-
fall in the Amazon basin has also been observed in
other studies using the CPTEC/COLA AGCM (Rocha
et al. 2001), suggesting that the bias of 25% reduction
in rainfall in the basin is due to problems in the
parameterization of deep convection. Experiments
made by changing the b parameter in the Kuo–Anthes
parameterization show an improvement in the rainfall

simulation. Similar underestimation is found in other
models: Goddard Institute for Space Studies GISS
(Marengo and Druyan 1994; Marengo et al. 1994),
Geophysics Fluid Dynamic Laboratory GFDL (Stern
and Miyakoda 1995); European Centre for Medium
Range Weather Forescast ECMWF (Brankovic and
Molteni 1997); National Center for Atmospheric
Research NCAR CCM3 (Hurrell et al. 1998), and the
Hadley Centre HadCM3 (P. Cox personal communi-
cation), and deficiencies were linked to the convection
and planetary boundary layer schemes in various models.

In Northeast Brazil (Fig. 2c, d) and southern Chile
(Fig. 2k) the model tends to overestimate rainfall sys-
tematically through the year, with the annual cycle well

Fig. 2a–p (Contd.)
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depicted in both northern and southern Northeast Bra-
zil. Actually, in north Northeast Brazil (Fig. 2c) there is
an obvious shift in the timing, with a longer rainy season
in the model. The transition season from wet to dry
conditions, which can often play an important role in
seasonal variability, is April–June in the observations
but is June–September in the model.

In northwest Peru (Fig. 2f) the model shows a large
overestimation (up to 300%) during the summer-fall
rainy season. This overestimation in northwest Peru and
the underestimation in northern Amazonia may be
connected by an excess of convection (ascending mo-
tion) over northwest South America and a deficit of
convection (descending motion) over Amazon region
(direct thermal circulation) associated with the strong El
Niño events of 1983 and 1987.

In southern Brazil–Uruguay (Fig. 2e) the model
underestimates the rainfall during January–September,
and during the October–December rainy season the
underestimation is of the order of the dispersion among
members of the ensemble as depicted by the standard
deviation. In the South Americanmonsoon area (Fig. 2g)
the model simulates quite well the annual cycle of rainfall
with similar values and large convergence among mem-
bers. In eastern Africa (Fig. 2h), the model realistically
reproduces the double peak of the rainy season, even
though the second peak is slightly overestimated.

In India (Fig. 2i), the agreement between model and
observations is good, in terms of amount and seasonal
cycle; the dispersion among members is lower than in
eastern Africa during the peak of the rainy season. In the
Pacific sector (Fig. 2l) the model overestimation of
rainfall in the ITCZ contrasts with the underestimation
of rainfall during the peak season in Southeast Asia
(Fig. 2j).

In North America (Fig. 2m), the simulation of rain-
fall in northeast North America shows that the CPTEC/
COLA AGCM tends to produce rainfall during the
January–February season, instead of the observed
summertime maximum. This simulation compares well
with the 30 AMIP models analyzed for rainfall in eastern
USA (Gates et al. 1999), where 14 models produce
precipitation exceeding the observed values during the
first half of the year and the other 16 models produce
such an excess during the second half of the year. In
Europe (Fig. 2n) the model depicts well the annual cycle
with a systematic overestimation all year long, similar to
the North American monsoon region (Fig. 2p). In
tropical West Africa (Fig. 2o) the model reproduces well
the annual cycle with the two peaks of the rainy season
in March–April and October–November, even though it
is underestimated.

5.2 Interannual variability of precipitation for selected
world regions

Time series of normalized departures of observed and
modeled precipitation from 1982 to 1991 during the

rainy season (for the same regions analyzed in Sect. 5.1)
are displayed in Fig. 3a–j, For northern Amazonia
(Fig. 3a), the scatter among some members of the
ensemble is relatively lower and the majority of member
anomalies are consistent with observations, showing the
negative rainfall departures in 1982–83 and 1986–87 and
the large positive rainfall departures in 1989. However
the model produced a wetter than normal rainy season
in 1988 that is not depicted by the CMAP rainfall
observations in northern Amazonia, while the model
captures the positive rainfall departures in southern
Amazonia in 1987 and 1988 and negative departures in
1986 (Fig. 3b). The dispersion among members of the
ensemble for the FMAM peak in both northern and
southern Northeast Brazil (Fig. 3c, d) is very low and
reproduces quite well the observed rainfall anomalies
during the El Niño years 1983 and 1987 and La Niña
years 1986 and 1989. These results are comparable to the
interannual variability of rainfall in Northeast Brazil
with the PROVOST experiments using persisted SST
(Folland et al. 2001) and with the original and revised
AMIP simulations by Sperber et al. (1999), with all of
them showing negative rainfall departures during 1983,
1987 and 1990, and large positive rainfall departures
during 1985 and 1989.

In southern Brazil–Uruguay (Fig. 3e), despite the
large scatter among members of the ensemble, the model
captures quite well the extremes of the observed inter-
annual rainfall variability; especially the above normal
values observed in 1983 and the drought conditions in
1989. In the South American monsoon region (Fig. 3g),
the scatter among members of the ensemble is quite
large, and most of the observed rainfall anomalies do
not agree with the rainfall anomalies produced by the
model. In northwest Peru–Ecuador (Fig. 3f) the model
reproduces quite well the large positive rainfall depar-
tures during the intense El Niño of 1983 and 1987, and
the spread among members of the ensemble is lower
during these two extreme events.

In eastern Africa, the interannual rainfall variability
produced by the model (Fig. 3h) exhibits the extreme
rainfall departures of 1984 (negative), and 1985 and
1990 (positive), which are consistent with the rainfall
simulated by the ECHAM3 T42 in this region by Mason
and Graham (1999). It is interesting to notice that while
the observations show negative rainfall departures on
this region in 1991, and the CPTEC/COLA model shows
positive rainfall anomalies, Mason and Graham (1999)
reported near normal observed and modeled rainfall. In
the Indian region, there is large spread among members
(Fig. 3i), but the modeled ensemble rainfall has similar
variability to the observations in 1986, 1988 and 1991.
Some of the El Niño years in that period (1982 and
1987) have experienced negative rainfall departures,
while the La Niña years 1983 and 1988 experienced
rainfall above normal (Sontakke et al. 1993). During
1982 an 1987, the CPTEC/COLA model produced po-
sitive rainfall anomalies, suggesting that the model
has little skill in reproducing the interannual rainfall
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variability in India and that the model may be unable to
simulate the observed teleconnection between rainfall in
India and the Pacific SST forcing.

The interannual variability of rainfall along the
Pacific ITCZ (Fig. 3l) is nicely depicted by the model,
and the spread among members of the ensemble is very
low. This is a consequence of the model’s response to the
location of the tropical SST forcing. In Southeast Asia,
observational studies demonstrate that El Niño related
impacts on this region include lower than normal rain-
fall. However, Fig. 3j shows that the observed and
modeled interannual variability do not coincide, sug-
gesting that no demonstrable skill exist over this region

during this short period. The same can be said for
Southern Chile (Fig. 3k), Northeast USA (Fig. 3m),
Europe (Fig. 3n), Tropical West Africa (Fig. 3o) and the
North American monsoon region (Fig. 3p).

Based on discussions in Sects. 5.1 and 5.2 we con-
clude that the CPTEC/COLA AGCM gives the phase of
the annual cycle of precipitation reasonably well in area
averages for tropical and subtropical South America, the
North American monsoon area, and Africa. In regions
such as Amazonia, Northeast Brazil and along the
Pacific ITCZ, the model reproduces the interannual
variability of rainfall, showing in some of them the
impacts of strong warming or cooling in the equatorial

Fig. 3a–p Interannual
variability of observed and
modeled normalized rainfall
departures in several regions of
the globe, during the peak of
the rainy season. Thick
blackline shows the observed
rainfall. Thick red line
represents the mean rainfall
from the model ensemble. Thin
blue lines represent each
member of the ensemble
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Pacific associated with ENSO, such as in 1983 and 1987
El Niño and 1985 and 1989 La Niña. Similar to other
models (HadAM2, Folland et al. 2001; and the AMIP
models, Sperber and Palmer 1996 and Sperber et al.
1999), the CPTEC/COLA AGCM shows a consistent
pattern of negative rainfall anomalies during the El Niño
years of 1983 and 1987.

For other regions, such as the Sahel and Indian
rainfall, and possible the monsoon regions of the
Americas, the CPTEC/COLA AGMC and the AMIP
models (Sperber and Palmer 1996) exhibit little coher-
ence among simulations of the interannual variability,
including the El Niño 1983 and 1987 and La Niña 1989.
On these regions, where the modeled and observed

interannual variability are very different, feedbacks that
go beyond the SST external forcing may be more
important. Section 5.3 shows that a more comprehensive
analysis of model skill is needed, in addition to the
inspection of the dispersion among members of the
ensemble.

5.3 Skill of the model simulation

Table 2 shows small values of the Brier skill score (Bs)
for several regions: the Pacific ITCZ (0.06), northern
and southern Northeast Brazil (0.18, 0.04), northern
Amazonia (0.19), and the Sahel (0.26), suggesting a good

Fig. 3a–p (Contd.)
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skill for the CPTEC/COLA AGCM in simulating
interannual variations of rainfall during the rainy sea-
sons in these regions. For other regions: India (0.91),
eastern Africa (0.51), South American monsoon (0.56),
and northwest Peru–Ecuador (0.56), the Brier scores are
greater than 0.5 (Brier scores greater than 0.5 are worse
than climatology). The high Bs in the monsoon regions
(India, North and South America), northwest Peru,
northeast USA, and southern Chile indicate that the
model is not skillful in simulating interannual variability
of rainfall in those regions when the model is forced by
observed SST. For some of the regions with lower Bs,
the annual cycle is well depicted, and in some regions
there is some systematic over- or under-estimation of the
rainfall amounts, although the simulated interannual
variability exhibits large differences with the observed
variability. However, in regions such as Northeast Bra-
zil, northern Amazonia, or the Pacific ITCZ both annual
and interannual variations are well simulated during the
1982–91 period of the model run, and the scatter among
members is relatively low, even though over Northeast
Brazil the rainfall is overestimated in the annual cycle.

The skill scores and the evidence shown in Figs. 2 and
3 for the CPTEC/COLA AGCM indicate that in
extratropical regions such as the American monsoon
regions, India, Southeast Asia–Indonesia, the continen-
tal USA, Europe, Japan and southern Chile, among
others, simulation of interannual variations of rainfall
still remains problematic, and some of the lack of skill in
simulating rainfall on these regions arises from the
strong effects on internal atmospheric variability, pos-
sibly due to land-surface feedback mechanisms or the
representation of sub-grid scale processes, as discussed

by Koster et al. (2000). In tropical regions much of the
predictable atmospheric variability on interannual time
scales is driven by SST anomalies, with the most
important source of variability being El Niño, and the
1982–91 model run period exhibited El Niño events,
including the very strong event of 1983.

Figure 4a–n shows the ROC curves for selected world
regions. Buizza et al. (1999) suggest that an area under
the ROC curve of more than 0.80 is an indication of a
good prediction system, and an area of 0.70 is the limit
for a useful prediction system. Considering that for a
skillful forecast system, the ROC curve should bends
toward the top left, where hit rates are larger than false
alarms, it is observed that Amazonia (Fig. 4a, b),
Northeast Brazil (Fig. 4c, d), southern Brazil–Uruguay
(Fig. 4e), northwest Peru–Ecuador (Fig. 4f), eastern
Africa (Fig. 4h), and the Pacific ITCZ (Fig. 4l) exhibit
this tendency. Southeast Asia–Indonesia (Fig. 4j) and
tropical West Africa (Fig. 4p) exhibit negative skill. For
the other selected regions, the curve lies close to the
diagonal, indicating that the forecast system does not
provide useful information. The behavior of the ROC
curves for regions such as Amazonia, Northeast Brazil,
southern Brazil–Uruguay, eastern Africa, Pacific ITCZ
and northwest Peru–Ecuador agrees with the analyses of
the interannual variability of model and observations
(Fig. 3) and the Brier skill scores.

In Northeast Brazil, the curves of below-normal
FMAM rainfall are positioned well toward to the top
left, specially in northern Northeast Brazil, indicating a
highly likely ratio (Fig. 4c), with the area of 0.91 under
the ROC curve (below normal precipitation) as com-
pared to an area of 0.82 above the ROC curve for pre-
cipitation above the normal. In northern and southern
Amazonia there are indications of some skill in simu-
lating either below or above-normal rainfall during the
MAM and DJF seasons. In the Pacific ITCZ region
(Fig. 4l) there is high predictability of above normal
rainfall conditions, slightly higher than that for below
normal rainfall conditions during the JFMA season. In
northwest Peru–Ecuador (Fig. 4f), the ROC curves
provide indications of skill in simulating above normal
precipitation during the FMAM season, while in eastern
Africa (Fig. 4h), the gretaer skill is in simulating below-
normal rainfall during FMAM.

In eastern Africa and northwest Peru–Ecuador, the
ROC and the Brier skill scores show for these regions
some degree of predictability, even though these regions
are sensitive to strong El Niño-related circulation
anomalies. The Brier skill score is based on rainfall
anomalies and the ROC is based on the hit and false-
alarm rates. The effect of the strong warm forcing in the
tropical Pacific that occurred in years during the period
of the simulation may be contributing significantly to
increase the ROC score (area under the ROC curve).

Using deterministic scores, Fig. 5a–d shows the sea-
sonal anomaly correlation coefficients for South Amer-
ica derived from the CPTEC/COLA AGCM 10-year
simulation model results and the CMAP rainfall data

Table 2 Brier skill scores of the CPTEC/COLA AGCM for vari-
ous rainfall indices in several regions in the world (Fig. 1)

Region Rainy season Bs

Amazonia (northern) MAM 0.19
Amazonia (southern) DJF 0.83
Caribbean–southeast USA JJAS 0.33
Central Australia DJF 0.58
Eastern Africa FMAM 0.51
Southwest Europe ONDJ 0.40
India JJA 0.91
Japan JJAS 0.67
North American monsoon JJAS 0.56
Northeast Brazil (northern) FMAM 0.18
Northeast Brazil (southern) FMAM 0.04
Northeast USA–Canada ASON 0.94
Northwest Peru–Ecuador FMAM 0.56
Northwest USA–Canada NDJF 0.72
Pacific ITCZ JFMA 0.06
Central–East Sahel JJAS 0.26
South American monsoon DJF 0.56
Southern Brazil–Uruguay JJA 0.38
Southeast Asia–Indonesia MJJAS 0.35
Southern Chile–Argentinean Patagonia AMJ 0.85
Southwest Africa DJF 0.47
SPCZ DJF 0.78
Tropical West Africa FMAM 0.82
West Pacific DJF 0.45
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Fig. 4a–p Hit rates versus false-alarm rates for seasonal area-
averaged rainfall at the peak season for selected regions (same
regions as Figs. 2 and 3). The hit and false alarm rates were
calculated using rainfall simulated by the CPTEC/COLA AGCM
forced with observed SST and using 9 members. Results are shown

for the simulation of rainfall above the normal (line with solid
circles) and below the normal (line with open circles). The area
beneath the ROC curves is indicated also for above and below-
normal precipitation
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set. The correlation is high over northern South
America, including northwest Peru–Ecuador, northern
Amazonia, and Northeast Brazil during austral summer

and autumn, when the peak of the rainy season is de-
tected on those regions. The correlations reach statistical
significant at 99% level based on a t-test in regions

Fig. 4a–p (Contd.)
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where the model has proven relatively good skill:
northern Amazonia, Northeast Brazil, southern Brazil
and the northwest coast of Peru–Ecuador.

The correlation coefficients over Northeast Brazil are
above 0.4 in all seasons, exceeding 0.6. In MAM cor-
relations exceed 0.6 during the pre rainy season (DJF)
and the rainy season (MAM), reaching values over 0.8 in
northern Northeast Brazil. In northern Amazonia, the
correlation exceeds 0.4 during the MAM peak of the
rainy season, while in southern Brazil, the values are
larger than 0.4 during DJF and MAM, reaching values
over 0.8 in areas close to Paraguay. In southeast Brazil
and the monsoon region of South America, the negative
correlations during the DJF and MAM (rainy season in
those regions) indicate the inability of the model to
simulate rainfall variability in those regions, in agree-
ments with the assessments shown in Figs. 3 and 4 for
the same regions.

It is relevant to acknowledge limitations of interpre-
tation of the anomaly correlations due to the small
number of years (10 years), and also to the uncertainty
in the exact values of the scores due to the sample size.
Currently, a major modeling effort is ongoing at
CPTEC, where a 9-member 50-year model run is being

performed. Analysis of one single member of the model
climatology shows correlation fields that are similar to
those shown in Figs. 3 and 4, even though the magni-
tude of the correlations is slightly lower.

Based on the dispersion among members of the
ensemble, and the correspondence between measures of
probabilistic scores of the model skill defined by the
Brier score and the area under the ROC curve, as well as
the deterministic score depicted by the anomaly corre-
lation regions such as Northeast Brazil, northern
Amazonia, southern Brazil, the northwest coast of Peru–
Ecuador, and eastern Africa show greater predictability
and good skill for the CPTEC/COLA AGCM in simu-
lating the interannual rainfall variability, as compared to
regions such as Europe, Japan, the USA, India, or the
North American monsoon. For Northeast Brazil, stud-
ies by Sperber and Palmer (1996) and Folland et al.
(2001) have demonstrated a relatively high degree of
predictability in this region, where two separate ocean
(tropical Pacific and tropical Atlantic) influence seasonal
climate variability on the quality of the rainy season.
From the analyses of skill scores and inter-member
model ensembles in the selected regions, there are indi-
cations that precipitation simulation within the tropics

Fig. 5a–d Correlation
coefficients between model
anomalies and observed
anomalies of rainfall,
considering the ensemble mean
a DJF, b MAM, c JJA, and
d SON. Color scale shows the
values of the correlations. Area
inside blue line represents
regions where the correlation
coefficients reached significant
at the 99% level
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was somewhat better during the El Niño years, but skill
is also good throughout the period 1982–91 regardless
the El Niño 1983 or 1987.

6 Summary and conclusions

This study focuses on regional rainfall features and its
temporal variability as simulated by a 9-member
ensemble 10-year simulation of the CPTEC/COLA
AGCM for the period 1982–1991. A companion paper
(Cavalcanti et al. 2002), describes the model and its
climatology, showing success in depicting the large scale
features if rainfall. At regional level, in the presence of
very large positive SST anomalies the model simulates
quite well rainfall anomalies regions such as Amazonia,
southern Brazil–Uruguay and northwestern Peru–
Ecuador, East Africa, specifically during the El Niño
years 1983 and 1987 and La Niña 1989. However, in the
absence of significantly large SST anomalies, the model
does not represent the observed rainfall variations with
the same skill as during El Niño years.

The T62 horizontal resolution (considered as fairly
high) of the CPTEC/COLA AGCM still shows prob-
lems in simulating rainfall along the major tropical-
subtropical convergence zones (SACZ, SPCZ), and
rainfall nearby mountain ranges. The model at the peak
of the rainy season systematically underestimates rain-
fall in northern Amazonia, while in the adjacent
Northeast Brazil the model tends to overestimate rain-
fall. However, in these regions the model depicts a
realistic annual cycle as well as interannual variability of
rainfall anomalies.

The correct simulation of the annual cycle does not
always guarantee a realistic simulation of the interan-
nual variability of rainfall, as is the case of the Indian
region, Tropical West Africa and the South American
monsoon regions. In regions such as Northwest Peru–
Ecuador, Northeast Brazil, and southern Brazil, the
large scale forcing associated with large SST anomalies
in the equatorial Pacific during El Niño results in a quite
realistic simulation of rainfall anomalies in those re-
gions, while during La Niña or neutral years the models
do not always simulate the observed rainfall variability.
The deterministic and probabilistic scores as presented
for the South American sector also demonstrate this.

In areas, such as Southeast Asia, tropical West
Africa, India, the North and South Americans monsoon
regions, and in some other mid-latitude regions (south-
west Europe and southern Chile) there is a large spread
among members of the ensemble and the simulated
rainfall anomaly most of the time is not consistent with
the observed one. For those regions, this apparent
insensitivity of the model to large tropical SST anoma-
lies may be responsible for the lower skill of the model
over those regions. Better predictability and model skill
is found in continental and oceanic tropical and equa-
torial regions. The possibility that there may be some
predictability of the FMAM rainfall in eastern Africa

was not indicated by the Bryears6icati.



level in the same regions identified on the 10-year nine
member model climatology. These improvements are
part of ongoing efforts directed to climate prediction
with better skill for regions characterized as exhibiting
lower predictability that, in the case of Brazil, includes
the most populated and economically important regions.

The strengths and weaknesses identified in this model
should not be regarded as permanent defects, since the
model is undergoing continuous improvement. Besides
some regional systematic biases, especially in the con-
vectively active equatorial regions, it is clear that some
areas exhibit systematic biases, such as the underesti-
mation of rainfall in northern Amazonia and an over-
estimation of rainfall in the Sahel. Other factors beyond
the external forcing provided by SST anomalies may be
important in their year-to-year climate variability, sug-
gesting current limitations on climate predictability over
those regions.
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