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COMPUTATIONAL COST OF
CPTEC AGCM

J. PANETTA", S. R. M. BARROS', J. P. BONATTI",
S. S. TOMITA* and P. Y. KUBOTA*
*INPE/CPTEC
tIME/USP

Abstract
This work describes development history, current characteristics
and computational cost of of CPTEC atmospheric global circulation
model. It derives and validates a computational cost model that
predicts flop counts under semi-Lagrangian or Eulerian formulation
on quadratic full or reduced grids, as well as semi-Lagrangian linear
full or reduced grids. Cost of high resolution runs at all formulations

are presented, compared and justified.

1 Introduction

Atmospheric global circulation models (AGCM) are central tools for nu-
merical weather forecast, climate research and global change studies. Pro-
duction weather centers worldwide continuously improve the quality and
detail of daily AGCM numerical predictions, by including new physical
parameterizations, enhancing model resolution and using advanced data
assimilation systems.

AGCMs are computationally expensive tools - their computational cost
is related to the forth power of horizontal resolution for fixed forecasting
time and vertical resolution. A long lasting requirement for increasing
AGCM resolution has been a driving force for the acquisition of powerful
computers by national weather centers and for the production of improved
machinery by the computer industry.

Algorithmic improvements in the last decade such as semi-Lagrangian
dynamics and reduced grids, although maintaining the forth power depen-
dency on resolution, have reduced the required number of floating point
computations (flop), allowing production AGCM resolution to evolve at a
faster pace than before. Execution time reductions by factors of 50 and
72 due to the combined use of such improvements have been reported
[Temperton 1999].
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Even with such algorithm reductions, there has been considerable debate
on the limits of increasing resolution imposed by the cost of the spectral
transform (see [Temperton 1999] and cited references). At 10 km horizontal
resolution over a classical AGCM formulation, the Earth Simulator reports
that 60% to 70% of the execution time is spend on the spectral method
([Shingu 2002]), even at record breaking processing speeds.

This work quantifies AGCM cost as a function of resolution and algorith-
mic improvement, by developing, validating and applying a computational
cost model that uses flop count, and not execution time, as a cost measure.
This machine independent approach allows mapping to any machine, given
estimates of execution time speeds for AGCM major components. It allows
cost comparison among Eulerian and semi-Lagrangian formulations as well
as quadratic, linear, full or reduced grid.

Section 2 describes CPTEC AGCM development and production histo-
ries. Section 3 describes CPTEC AGCM current contents. Section 4 derives
and validates the cost model, that is used to forecast high resolution costs
at section 5. Conclusions are drawn in section 6.

2 Development and Production Histories

CPTEC AGCM descends from the 1985 National Center for Environmental
Prediction (NCEP) production model. NCEP granted code access to the
Center for Ocean, Land and Atmosphere Studies (COLA) that included
additional features, generating independent, development tracks.

CPTEC started operations in 1994 with a single processor NEC SX-3.
The early production AGCM, named CPTEC-COLA, was COLA version
1.7 with local modifications on spectral truncation (from rhomboidal to tri-
angular) and on vectorization. Continuous dynamics and physics modifica-
tions made by CPTEC generated new versions of CPTEC-COLA, departing
from COLA continuous work.

Around 1998, CPTEC-COLA was updated with the inclusion of COLA
version 1.12 modifications. The acquisition of a NEC SX-4 shared memory
parallel processor at 1998 required model parallelization, implemented by
NEC parallel directives. Model description and computational character-
istics of CPTEC-COLA production versions on the SX-4 are available at
[Cavalcanti 2002] and [Tamaoki 1999].

A long term model modernization project started at 2000. The project
was centered on a review of model dynamics formulation to include semi-
Lagrangian dynamics as an option to the original Eulerian dynamics. The
project also required full code rewriting to accommodate the formulation
review, to allow choice of linear or quadratic, full or reduced grids, to
simplify the inclusion of new physical process parameterizations and to
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ease the introduction of OpenMP parallelism. Physical processes were also
updated, with the insertion of Souza shallow cumulus parameterization
[Souza 1999]. This modernization plan marks a full departure from the
original CPTEC-COLA and its versions. In late 2004, after 20 man-years
of work, the resulting code (referred as CPTEC-OMP) faced pre-production
runs.

The acquisition of a multi-node NEC SX-6 in 2004 required the inser-
tion of distributed memory parallelism without destroying shared memory
parallelism. Meanwhile, successful research introduced a new set of phys-
ical process parameterizations such as Grell convection [Grell 2002], soil
humidity initialization [Gevaerd 2006], CLIRAD and UKMO short wave
radiation [Chou 1996, Tarasova 2006, Edwards 1996]. This resulting model
will be referred as CPTEC-MPI-OMP.

Model development currently continues in at least three distinct direc-
tions. Generation of a massively parallel version targeting 1000 processors
is about to start. CLIRAD and UKMO long wave radiation is being in-
serted and their accuracy being tested. Coupling with MOM-4 ocean model
and with a chemistry mechanism generated by the SPACK pre-processor is
also under way.

CPTEC production history started in 1994 with a T062L28 CPTEC-
COLA Eulerian, quadratic and full grid formulation. Production model
resolution and formulation was maintained until April 2000, when reso-
lution was increased from T062L28 to T126L28. During the 1996-2000
period the production version was continuously enhanced by adjustments
in physics parameterizations and execution time optimizations. In April
2005, production moved to an Eulerian, quadratic and reduced grid formu-
lation of CPTEC-OMP at T213L42 resolution, which is the current pro-
duction model. An T299L.64 Eulerian, quadratic and reduced grid formula-
tion of CPTEC-OMP is currently under pre-production tests, about to be
promoted to production. Meanwhile, a T511L64 resolution CPTEC-MPI-
OMP with semi-Lagrangian, linear and reduced grid formulation is being
prepared for pre-production tests.

3 Model Description

AGCM is a global spectral model. It allows runtime selection of six formu-
lations: Eulerian or semi-Lagrangian dynamic models on quadratic full or
reduced grids, as well as semi-Lagrangian linear full or reduced grids.
These six model formulations will be represented by a three letter string
where the first letter denotes dynamics (E for Eulerian or S for semi-
Lagrangian), the second letter denotes quadratic (Q) or linear (L) grid and
the third letter full (F) or reduced (R) grid. As an example, SLF stands



68

for semi-Lagrangian, linear and full grid.

AGCM is a hydrostatic model. Dynamics formulation uses a three time
level scheme and vertical sigma coordinate to solve the usual primitive equa-
tions. An implicit horizontal diffusion scheme improves stability, allowing
high resolution runs. Legendre transforms are formulated in matrix form,
allowing the use of fast libraries.

Dry physics is composed by SSiB land surface module, Mellow-Yamada
level 2 turbulence, gravity wave drag parameterization, a choice of CLI-
RAD, UKMO or Lacis and Hansen short wave radiation and Hashvard-
han long wave radiation. Wet physics contains a choice of Kuo, relaxed
Arakawa-Schubert or Grell deep convection, a choice of Souza or Tiedk
shallow convection and large scale convection.

Model code comprises about 65000 lines. It is written in modular For-
tran 90 with fully dynamical memory allocation. There are no common
constructs - physics routines are argument driven, dynamics refer to global
fields by use only, transform data structure is encapsulated. All variables
are declared and all procedure arguments carry desired intent.

Domain decomposition parallelism designed for a dozen nodes uses MPI
1.1 standard library calls. Within each domain partition, shared memory
parallelism uses OpenMP 2.0 directives. Portability is achieved for 32 or
64 bits Linux systems, over Itanium or Xeon processors, with Intel or PGI
compilers and MPICH or LAM MPI. Binary reproducibility is an achieved
design goal. It is realised on each of these machines with any number of
processors and parallelism scheme.

Code design allows insertion of new column-based physics parameter-
izations without affecting parallelism, provided that the inserted code is
thread safe. Physical processes were recoded to adhere to a coding stan-
dard where inner loops sweep atmospheric columns while outer loops deal
with vertical levels. Physics is prepared to process any non-empty set of
atmospheric columns, accommodating both cache based and flat memory
machines by specifying the number of atmospheric columns to be processed
at each invocation.

4 Cost Model Derivation

This section derives an analytic model for the computational cost of CPTEC
AGCM, measured by the number of floating point operations (flop) as a
function of problem size (horizontal and vertical resolution) and AGCM
formulation.
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4.1 Notation

A computational cost model is a linear combination of cost parcels weighted
by their execution frequency, where each cost parcel accounts for one AGCM
component. Since components are executed every timestep except for short
and long wave radiation that are executed at fixed forecasting times, the
cost model adds the cost of short and long wave radiation weighted by their
own number of timesteps to the cost of remaining components weighted by
the full number of timesteps.

Symbol | Meaning (number of)

i timestep executions

T short wave radiation executions

g long wave radiation executions

v vertical levels

f Fourier waves (model truncation plus one)
8 spectral coefficients

P grid longitudes (zonal points)
Pm grid latitudes (meridional points)

g grid surface points
9 grid surface points over land
Jo grid surface points over ocean or ice
Sy full fields for spectral to grid transforms
Ss surface fields for spectral to grid transforms
Gy full fields for grid to spectral transforms
G surface fields for grid to spectral transforms
c transform spectral contributions
F FFT cost component

Table 1: Cost model input variables

Table 1 contains cost model input variables and their meaning. Input
variables are computed over a single vertical level (except for v). The last
six table entries are designed for Legendre transform cost analysis and de-
serve further explanation. The number of transformed fields change with
model formulation, since the Eulerian formulation demands more fields to
be transformed than the semi-Lagrangian formulation. The last two vari-
ables are detailed at the transform cost analysis section 4.3.

Cost analysis splits AGCM into three major components: dynamics,
physics and transforms. A detailed cost for each component follows.
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4.2 Dynamics

Dynamics is split into spectral dynamics and grid dynamics.

Spectral dynamics mainly consists of double nested loops that sweep all
spectral coefficients of all vertical levels of some fields. Cost can be modeled
as ksv. But there are exceptions.

Time splitting semi implicit computation cost dominates spectral dy-
namics cost. Since it contains one more loop over verticals, its cost is ksv?.
We neglect other exceptions, such as the dissipative filter that has cost pro-
portional to the number of dissipated associated Legendre functions. These
neglected items are assimilated by the constants that will vary with model
formulation. Spectral dynamics cost model is

kysv? + kasv

where k; and ko are constants to be determined.

Grid dynamics has a similar form. It mainly consists of double nested
loops that sweep all grid points of all fields, except for the computation
of geopotential gradient that contains a third loop over verticals. As in
spectral dynamics, we neglect model formulation impact, accepting one
constant value for each formulation. Grid dynamics cost model is

k3gv® + kqgv

where k3 and k4 are constants to be determined.

4.3 'Transforms

First, consider spectral to grid transform. Split the transform into two
components, the spectral to Fourier and Fourier to grid transforms.

Spectral to Fourier transform consists of two parts: the generation of
even and odd Fourier components from spectral coefficients and the com-
position of Fourier coefficients from its even and odd components. Both
parts are computed for each vertical of every transformed field.

For a single field vertical, even and odd Fourier components are gen-
erated by inner products of spectral coefficients with associated Legendre
functions. Inner product length decreases linearly with Fourier wave num-
ber and there is one even (odd) inner product for each latitude and Fourier
wave number. On full grids, this cost could be modeled by kp,, f(f + 3),
where f(f+3) arises from adding inner products of decreasing lengths over
all Fourier waves. But on reduced grids, inner product length and number
of Fourier waves vary with latitude, as specified by the Courtier-Naughton
criteria. Instead of approximating this cost, we take the sum of inner prod-
uct lengths over all latitudes as a cost model input parameter (denoted by
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¢). Consequently, the cost of computing even and odd Fourier components
is ke for each field vertical.

The composition of Fourier coefficients from even and odd components is
proportional to the number of Fourier coeflicients. For a single field vertical,
this cost occurs for every latitude, being modeled by kp,, f. Including the
number of verticals to be transformed and bringing together the two parts,
the spectral to Fourier transform cost is modeled by

k5(SI'U + Ss)(c + pmf)

where Syv + S, accounts for all transformed verticals (varying with model
formulation), ¢ accounts for the inner products and p,, f accounts for ob-
taining Fourier coefficients from even/odd components.

Fourier to grid transform consists of FFTs of length equal to the number
of Fourier waves. One FFT is computed for each latitude and transformed
field vertical. On full grid formulations FFT lengths are latitude indepen-
dent, leading to the kp,, flog,(f) cost function for each field vertical, since
an FFT of length f has cost flog,(f). But on reduced grids FFT length
vary with latitude, introducing an unacceptable large error.

After extensive experimentation, we adopted FFT cost for each trans-
formed vertical as kF', where F is the sum over latitudes of flog,(f), with f
varying with latitude. Value of F' is computed during AGCM initialization.
With that, we modeled Fourier to grid transform by

ke(Sjv+ Ss)F

Even with this very simple model, accuracy is not fully acceptable.
Measurements show that flog,(f) is not a good estimate of the FFT com-
putational cost at the range of FF'T sizes used during experimentation. No
better alternative was found.

We now consider the grid to spectral transform, that has cost similar to
the spectral to grid transform, except for the number of transformed fields.
The grid to Fourier transform cost is similar to the Fourier to grid cost and
will be modeled by

kr (G U+ G 8)F

while the Fourier to spectral transform has cost similar to the spectral to
Fourier transform and will be modeled by

ks(Gyv + Gs)(c + pmf)

4.4 Physics

Split physics into wet physics and dry physics. Furthermore, split dry
physics into short wave radiation, long wave radiation and the remaining
dry physics.
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Wet physics has cost proportional to the number of grid points and
verticals, being modeled by
kogu

Short wave radiation contains double nested loops that sweep all grid
points at all vertical levels. Consequently, short wave radiation is modeled
by

kiogv

Long wave radiation contains double and triple nested loops. Double
nested loops sweep all grid points at all vertical levels. Triple nested loops
include one more loop over verticals, which is a triangular loop. A detailed
analysis leads to

kiig(v + 2)(v + 1) + kyagv

where the first term covers triple nested triangular loops and the second
term double nested loops.

Remaining dry physics is split into five components: turbulence, grav-
ity wave drag, land surface, sea and ice surface and all the remaining
dry physics computations. These components were selected due to non-
neglecting costs on low resolution models and variable cost factors.

Turbulence, gravity wave drag and the remaining dry physics consists
of double nested loops over all horizontal grid points and a variable num-
ber of verticals. Turbulence is modeled by leaving out one vertical level,
while additional levels where incorporated on gravity wave drag and the
remaining dry physics cost models, accounting for intermediate grid point
computations. These three components are modeled by

k13g(’v - 1) + k14g(v =+ l) + k15g(v + 6)

where the first component represents turbulence, the second component
represents gravity wave drag and the last component the remaining dry
physics.

Surface computation is proportional to the number of surface points,
while sea and ice computations is also proportional to the number of sea
and ice points. Both are modeled by

kiggi + k1790

4.5 Including timesteps

Computational cost for a fixed forecasting time is the sum of the previously
established costs multiplied by their execution frequency. As previously
stated, short and long wave radiation have a fixed execution frequency,
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while remaining cost components have an execution frequency that depends
on resolution. Total computational cost is then modeled by

( k1sv? + kosv + kagv? + kagu+
ks(Sgv+ Ss)(c+ pmf) + ke(Spv + Ss) F+
k7(Gjv + G)F + ks(Gyv + Gy)(c + pm f)+
kogv + k13g(v — 1) + k1ag(v + 1) + k1sg(v + 6) + kisgt + k1790 )ns +
( kiogv )ns +
( kiig(v + 2)(v + 1) + ki2gv )
(1)

4.6 Computational Complexity

Relative impact of each cost component on the total cost requires knowl-
edge of the values of constants k; to k;7. But dominating cost factors as
resolution increases result from complexity analysis.

Complexity can be written as a function of spectral truncation (¢) and
vertical levels (v). It suffices to write cost model input variables of table 1
as a function of both variables. Fourier waves (f), longitudes and latitudes
(p: and p;,) are O(t). FFT cost component (F) is O(t? log,(t)). Spectral
coefficients (s) and grid surface points (g, g, go) are O(t*) while transform
spectral contributions (¢) is O(#*). It should be noted that the number of
timesteps (n;) is O(t) due to the CFL stability criteria, while short and
long wave radiation frequencies (ns and n;) are kept constant.

Direct substitution and O() analysis leads to O(t*v?) complexity for
dynamics, O(#3v) for transforms, O(t?v) for short wave radiation, O(t?v?)
for long wave radiation and O(t?v) for remaining physics. Consequently,
components complexity is either O(t3v) if ¢ varies faster than v or O(t?v?)
otherwise.

Inserting timestep dependency on ¢ and assuming that ¢ grows faster
than v, computational complexity of AGCM is dominated by the transform
O(t'v) complexity.

4.7 Experimental Setting

Values of k; to k7 were obtained experimentally. AGCM was instrumented
to report flop count measured by NEC SX-6 hardware counters at the
seventeen selected code sections. Instrumentation also reported flop count
for the entire integration, for cost model validation purposes.

For each of the six formulations, AGCM executed a 24 hours forecast
on nine grid resolutions: 210km?28lev, 105km28lev, 78km28lev, 78km42lev,
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63km42lev, 52km42lev, 52kmé4lev, 42kmb64lev and 35kmé64lev. A tenta-
tive value for each of the seventeen constants resulted from the division
of measured flop count by corresponding cost factor computed at experi-
mented resolution. This procedure generated nine tentative values for each
constant at each formulation. A least squares procedure over the nine ten-
tative values produced final constant value for each formulation.

Table 2 contains the least squares fitted constant values for each model
formulation.

EQF EQR SQF SQR SLF SLR 4

ky 12.28 12.28 12.28 12.28 12.28 12.28 || 0.15
k2 111.49 | 111.49 | 108.99 | 108.98 | 106.08 | 106.08 | 3.05
k3 4.00 4.00 4.00 4.00 4.00 4.00 || 0.00
ky 192.15 | 192.74 | 1813.35 | 1832.68 | 1813.35 | 1832.80 || 5.88
ks 2.00 2.00 2.00 2.00 2.00 2.00 | 0.00
kg 4.98 5.88 4.98 5.88 4.98 5.90 || 0.32
kv 5.21 6.14 5.21 6.14 5.21 6.16 | 0.37
ks 2.00 2.00 2.00 2.00 2.00 2.00 || 0.00

ko 265.51 | 266.05 | 265.32 | 265.98 | 265.47 | 266.07 | 2.48

kip || 1869.21 | 1906.41 | 1866.59 | 1901.87 | 1862.86 | 1899.83 | 27.07

ki 62563 | 625.62 | 625.63 | 625.63 | 625.63 | 625.63 | 0.07

k2 || 1670.89 | 1670.98 | 1670.89 | 1670.98 | 1670.90 | 1670.95 || 16.62

ki3 19487 | 194.87 | 19486 | 194.87 | 19487 | 19487 | 0.33

kis 90.76 88.47 90.75 88.48 90.77 88.40 || 2.72

ks 70.22 70.03 70.23 70.04 70.23 70.04 || 0.14

ks || 5562.10 | 5848.65 | 5658.61 | 5972.06 | 5664.78 | 5984.11 || 64.10

ki7 870.38 | 868.95 | 871.89 | 870.22 | 871.65 | 871.83 || 3.28

Table 2: Measured constants

Cost model derivation assumes that constant values vary with formula-
tion, but some fluctuations require explanation. Linear spectral dynamics
constant (k) variation is attributed to the unmodeled dissipative filter.
Large variation on linear grid dynamics constant (k) is attributed to the
semi-Lagrangian transport, absent on the Eulerian formulation. FFT con-
stant values variation (ks and k7) are due to an unsatisfactory flog,(f) cost
approximation at the problem range tested. Gravity wave drag constant
variation (k;4) has unknown reasons.

An indication of model accuracy is the spread of tentative constant
values that are input at each least squares procedure. It is natural to
expect that the set of nine tentative values for each constant are spread
around the computed least square value. Spread was measured by the
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standard deviation of each set of nine tentative values. The maximum
standard deviation over all formulations (denoted by o) is reported at the
last column of table 2, showing an exceptionally tight data spreading that
indicates adequate representation of selected AGCM cost components.

Table 2 indicates that some constant values seem to be grouped on
clusters at full and reduced grids. Value of kg is 4.98 for all full grids and
close to 5.88 for all reduced grids. A similar effect occurs on k7 and k4, and
at semi-Lagrangian components of k4. But k2 has other clustering form: its
value does not change with reduced or full grid, but changes from Eulerian
to semi-Lagrangian and from quadratic to linear grid. Further research is
required to fully understand the cost model behavior.

4.8 Cost model validation

The cost model is validated by comparing predicted and measured costs on
two problem size ranges: inside and outside the range used to obtain the
seventeen constants.

Validation within the problem range used to compute the constants
does not require further AGCM executions, since each execution reports
total flop count for the entire integration. It suffices to quote cost model
predicted costs with reported flop counts. Figure 1 reports prediction error,
computed by (1 — p/m) where p is predicted cost and m is measured cost.
It shows that cost model error is bellow 2% and that error reduces as
resolution increases.

Model validation outside used problem range require further AGCM
executions. AGCM was executed on the SQR formulation at 20km96lev
resolution with a semi-Lagrangian timestep equals to six Eulerian timesteps.
Reported flop count of 173.842 TFlop compares favorably with cost model
prediction of 172.718 TFlop, producing a cost model prediction error of
0.65%.

5 Predicted Costs

This section uses the cost model to estimate flop count at high grid resolu-
tions and spectral truncations. For the high grid resolution case, spectral
truncation changes from quadratic to linear grid formulation to accom-
modate the fixed grid resolution. High spectral truncation case takes the
inverse direction, fixing spectral truncation and changing grid resolution
accordingly.
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Modeling Error
2,00% -
1,00% - —
210km28  105km28 m28 63km4a2 2k) 42km64 W
-1,00% ——

BEQF BEQR DSQF OJSQR WSLF @SLR

Figure 1: Modeling error

5.1 Fixed grid resolution

Table 3 contains flop count (in TFlop) predicted by the cost model to fore-
cast a single day at selected high resolutions. It also contains the cost of
major AGCM components in absolute and relative terms. Data was gen-
erated with a fixed radiation invocation frequency and a semi-Lagrangian
timestep that is the triple of the Eulerian timestep.

Summarizing, the Eulerian quadratic has the highest flop count of all
formulations, followed by semi-Lagrangian linear, followed by semi-Lagrangian
quadratic. As expected the reduced grid is cheaper to compute than the
full grid.

A detailed analysis follows.

5.1.1 Eulerian to Semi-Lagrangian Quadratic

Eulerian quadratic flop count is 1.9 to 2.6 times higher than the correspond-
ing semi-Lagrangian quadratic count, which is lower than expected since
timestep was reduced by a factor of three.

Dynamics cost is slightly higher on semi-Lagrangian than on Eulerian
formulation (about 8% on full grids and about 2% on reduced grids). Semi-
Lagrangian dynamics has the expensive transport cost that is absent on the



77

Form [ Comp | 25km96lev | 20km96lev | 15km96lev | 10km96lev ||
Trans | 249 (60%) | 591 (66%) | 1846 (73%) | 7576 (81%)
EQF | Dyna | 53 (13%) | 104 (12%) | 252 (10%) | 734 ( 8%)
Phys | 116 (28%) | 200 (22%) | 422 (17%) | 1055 (11%)

Total | 418 895 2520 9364
Trans | 194 (62%) | 461 (69%) | 1432 (76%) | 5879 (83%) ||
EQR | Dyna 39 (13%) | 76 (11%) | 182 (10%) | 534 (8%) ||
Phys 78 (25%) | 134 (20%) | 278 (15%) | 696 (10%) ||
Total | 311 671 1892 7109 |
[ Trans | 71 (33%) | 169 (40%) | 530 (49%) | 2186 (61%)
SQF | Dyna | 58 (27%) | 112 (27%) | 273 (25%) | 795 (22%)
Phys 84 (40%) | 138 (33%) | 270 (25%) | 613 (17%)

Total | 213 419 1073 3594
Trans | 55 (36%) | 132 (44%) | 411 (53%) | 1697 (64%)
SQR | Dyna | 40 (26%) | 78 (26%) | 187 (24%) | 546 (21%)
Phys 57 (37%) | 92 (31%) | 177 (23%) | 403 (15%)

Total | 152 302 776 2646
Trans | 150 (55%) | 357 (58%) | 1132 (67%) | 4734 (76%)
SLF | Dyna 63 (21%) | 121  (20%) | 294 (17%) | 856 (14%)
Phys 84 (24%) | 138 (22%) | 270 (16%) | 613 (10%)

Total | 297 615 1696 6203
Trans | 117 (58%) | 279 (61%) | 881 (70%) | 3675 (78%) ||
SLR | Dyna | 45 (20%) | 86 (19%) | 206 (16%) | 604 (13%) ||
Phys 57 (22%) | 92 (20%) | 177 (14%) | 403 (9%) ||
Total | 219 456 1264 4682 |

Table 3: Predicted TFlop per forecasting day for fixed grid resolutions

Eulerian formulation, but the cost of remaining semi-Lagrangian dynamics
components is reduced (with respect to similar Eulerian components) by
the larger semi-Lagrangian timestep. Consequently, the increase cost due
to transport is almost balanced by the timestep reduction.
Transform cost decreases from Eulerian to semi-Lagrangian by a fac-
tor larger than timestep increase (about 3.5), due to the reduction on the
number of transformed fields.
Physics cost decreases by a factor of 1.3 to 1.7, which is lower than
expected. That is due to the fixed (timestep independent) radiation cost.
Summarizing, the high gain on transform is reduced by the expensive
radiation.
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5.1.2 Semi-Lagrangian Quadratic to Linear

On a fixed grid resolution, the semi-Lagrangian linear formulation is more
expensive than the semi-Lagrangian quadratic formulation due to the in-
crease (about 50%) on spectral truncation.

Dynamics cost barely changes, since the dominant cost on semi-Lagrangian
formulations - the transport - is computed on the fixed grid.

Transform cost is increased by a factor of 2.1 from quadratic to linear,
due to the nonlinear (with respect to spectral truncation) cost.

Physics cost does not change since grid size, timestep and radiation
frequency are identical on both formulations.

When fixed physics cost is added to about fixed dynamics cost and to
increased transform cost, the semi-Lagrangian linear formulation cost is
from 1.4 to 1.7 times the grid equivalent semi-Lagrangian quadratical cost.

5.1.3 Full to Reduced Grids

A Reduced grid has about 33% less points than the corresponding full grid,
but flop count reduction is about 26%.

Dynamics cost does not scale linearly with grid point reduction since
the constant spectral coefficient count propagates to a constant spectral
dynamics cost, reducing the gain at dynamics to about 28%.

At transforms, FFT lengths are decreased at the same ratio as grid
points. But the reduction does not scale linearly to the transform cost (re-
duced by 22%), since both FFT and Legendre transform costs are nonlinear
on the number of Fourier waves.

Physics cost reduction is linear (33%) since all physics cost terms are
linear on the number of grid points.

Summarizing, fixed spectral dynamics and nonlinear transform costs
reduce the linear gain on physics.

5.1.4 Increasing Semi-Lagrangian Timestep

The cost model predicts the impact of increasing semi-Lagrangian timestep
from the triple Eulerian timestep baseline to four, five and six Eulerian
timesteps. Figure 2 reports relative (to baseline) cost of increased timesteps
on the SQR formulation. Relative cost of a linear gain (to baseline) is shown
as a reference.

Cost does not scale linearly with timestep increase due to the fixed
radiation cost. For a fixed grid resolution timestep enhancements have
decreasing returns, due to the fixed radiation cost. For a fixed timestep
enhancement, increasing resolution has increasing returns, due to increasing
weight of transforms (higher complexity) that lowers the impact of radiation
on total cost.
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Figure 2: Semi-Lagrangian Quadratic Relative Cost

5.2 Fixed spectral truncation

Table 4 compares formulation costs for fixed spectral truncation and vari-
able grid resolution. It is identical to table 3 except on the linear grid - re-
maining cases are repeated for the benefit of the reader. As in table 3, costs
are reported in TFlop for a single forecast day, data was generated with
the same fixed radiation invocation frequency and with a semi-Lagrangian
timestep that is the triple of the Eulerian timestep.

For fixed spectral truncations, semi-Lagrangian linear formulation has
the lowest flop count, followed by semi-Lagrangian quadratic and Eulerian
quadratic. Full grid requires more flops than reduced grid. Trading the
more expensive formulation (EQF) by the cheapest formulation (SLR) re-
duces flop count by an impressive factor of six.

For a detailed analysis, it suffices to study the semi-Lagrangian quadratic
to linear transition.

5.2.1 Semi-Lagrangian quadratic to semi-Lagrangian linear

The cost of semi-Lagrangian linear is about 53% to 59% of the semi-
Lagrangian quadratic cost. Profit comes from a 44% reduction on grid
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[ Form | Comp | T533L96 | T666L96 | T888L96 | T1279L96 |

Trans | 249 (60%) | 591 (66%) | 1846 (73%) | 7576 (81%)
EQF |Dyna | 53 (13%) | 104 (12%) | 252 (10%) | 734 (8%)
Phys | 116 (28%) | 200 (22%) | 422 (17%) | 1055 (11%)
Total | 418 895 2520 9364

Trans | 194 (62%) | 461 (69%) | 1432 (76%) | 5879 (83%)
EQR [Dyna | 39 (13%) | 76 (11%) | 182 (10%) | 534 (8%)
Phys | 78 (25%) | 134 (20%) | 278 (15%) | 696 (10%)
Total | 311 671 1892 7109

Trans | 71 (33%) | 169 (40%) | 530 (49%) | 2186 (61%)
SQF | Dyna 58 (27%) | 112 (27%) | 273 (25%) | 795 (22%)
Phys 84 (40%) | 138 (33%) | 270 (25%) | 613 (17%)
Total | 213 419 1073 3594

Trans | 55 (36%) | 132 (44%) | 411 (53%) | 1697 (64%)
SQR | Dyna | 40 (26%) | 78 (26%) | 187 (24%) | 546 (21%)
Phys | 57 (37%) | 92 (31%) | 177 (23%) | 403 (15%)
Total | 152 302 776 2646

Trans | 46 (41%) | 117 (48%) | 342 (58%) | 1422 (69%)
SLF | Dyna | 28 (25%) | 58 (24%) | 130 (22%) | 380 (18%)
Phys | 38 (34%) | 67 (28%) | 120 (20%) | 272 (13%)
Total | 112 242 592 2075

Trans | 36 (44%) | 92 (52%) | 267 (61%) | 1107 (71%)
SLR | Dyna | 20 (25%) | 41 (23%) | 92 (21%) | 270 (17%)
Phys | 26 (31%) | 45 (26%) | 79 (18%) | 180 (12%)
Total | 82 117 438 1557

Table 4: Predicted TFlop per forecasting day for fixed spectral truncations

point count, since both latitude and longitude counts on linear grids are
2/3 of corresponding quadratic grid figures.

Dynamics reduction factor of 50% is a linear combination of no gain in
spectral dynamics, due to the fixed spectral truncation, with a 44% gain in
grid dynamics, due to grid point count reduction.

Transform cost is reduced to 66% due to 2/3 reduction factor on number
of latitudes.

Physics cost reduction (about 44/since physics cost is linear on grid
points.

Summarizing, physics gains due to the linear grid are attenuated by the
fixed spectral dynamics cost and the lower gain at transforms.
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5.2.2 Increasing semi-Lagrangian timestep

Increasing timestep on the semi-Lagrangian linear reduced formulation over
fixed spectral truncation generate gains similar to those achieved at the
fixed grid resolution (section 5.1.4). Figure 3 contains the corresponding
data, generated and reported as previously.

B81%
80%

7%

65%

S——"

T533L.96 T666L96 T888L96 T1279L96 Linear
(40t m5ct Ded:

Figure 3: SLR relative cost as timestep increases

Conclusions are similar - cost reduction is attenuated by a fixed radia-
tion cost. Although cost figures are similar, gains on the fixed truncation
case (SLR) are higher than on the fixed grid case (SQR), due to lighter radi-
ation relative cost on the linear grid cost composition than on the quadratic
grid cost composition.

6 Conclusions

This work quantifies the computational cost of CPTEC AGCM. It derives,
validates and applies a cost model that reports AGCM flop count, given
input resolution and formulation. The cost model is machine independent
but also AGCM dependent, since computational cost depends upon specific
implementations.
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The cost model shows that the Eulerian, quadratic and full AGCM
formulation (the classical formulation) requires 9.3 PFlop for a single fore-
cast day at 10 km, 96 level resolution. The use of reduced grid and semi-
Lagrangian dynamics with a triple timestep reduces flop count to 2.6 PFlop.
Moving to a linear grid may reduce flop count to 1.5 PFlop, if spectral trun-
cation is kept constant, or increase flop count to 4.6 PFlop if grid resolution
is kept constant. Consequently, moving from the Eulerian quadratic full
formulation to a semi-Lagrangian linear reduced formulation with a triple
timestep reduces flop count by a factor of 6.2.

Larger gains can be achieved by increasing the semi-Lagrangian timestep,
if forecast quality is not compromised. Assuming that forecast quality is
accepted when using a six-fold timestep, cost of semi-Lagrangian quadratic
is reduced to 55% of the triple timestep cost, reaching 1.4 PFlop, while
cost of semi-Lagrangian linear is reduced to 54%, demanding 0.8 PFlop - a
reduction factor of about 12 from the classical formulation.

These cost reduction factors are explained by a detailed analysis of
dynamics, transforms and physics costs.

Given execution time restrictions of production runs, is it possible to
enhance production spectral truncation up to T1279L96 in the near future?
Elementary arithmetic over cost model data results that a 2.32 TFlops
effective execution speed is required to execute a 15 days forecast in 1.5
hours with the SLR formulation (15 km grid resolution), and a 4.03 TFlops
effective execution speed is required for the SQR formulation (10 km grid
resolution). Such speeds are way below target speeds of the next generation
of machines.

These conclusions should be taken with caution. Variations on timestep
length and radiation invocation frequency cause large changes on forecasted
cost. The quality of numerical results is unknown. Its dependency on semi-
Lagrangian timestep is also unknown. Finally, cost model dependency on
AGCM details should be always stressed.
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